
Super Twisting Sliding Mode Controller Applied to
a Nonholonomic Mobile Robot

Razvan Solea, Daniela Cernega
Faculty of Automatic Control,Computers, Electrical and Electronics Engineering

“Dunărea de Jos” University of Galati, Romania
Email: razvan.solea@ugal.ro, daniela.cernega@ugal.ro

Abstract—In this paper, a new approach of the super twisting
sliding mode control of nonholonomic mobile robot system is pro-
posed. Computer simulations and real time implementations are
performed on a real mobile robot (Pioneer-3DX) with parameter
uncertainties and external disturbances. The simulation results
and real experiments have shown the improved performance of
the proposed controller in terms of a decrease in the reaching
and settling times and robustness to disturbances as compared to
the conventional sliding mode controller. Moreover, the proposed
sliding-mode controller is very simple and easy to implement in
real nonholonomic mobile robot.

Index Terms—Wheeled Mobile Robot, Sliding Mode Control,
Super Twisting Sliding Mode Control.

I. INTRODUCTION

In the past decades, wheeled mobile robots (WMRs) are
widely applied in various industrial and service fields which
include manipulation, transportation, inspection, security etc.,
and they became an object of interest. The applications for
WMRs are designed for several mobility configurations (wheel
number and type, their location and actuation, single or
multibody vehicle structure). The most common for single-
body robots are differential drive, tricycle or car-like drive,
and omnidirectional steering [1].

One of the most challenging problems, with high rele-
vance for applications, is the problem of autonomous motion
planning and control of WMRs. In particular, WMRs are
typical systems examples for nonholonomic mechanisms due
to the perfect rolling constraints on the wheel motion (e.g. no
longitudinal or lateral slipping).

The trajectory tracking control, which is one of the three
basic navigation problems, means to track reference trajecto-
ries either predefined or given by path planners. The trajectory
tracking control of vehicles research work, in the last ten
years, lead to the development of various effective methods
and tracking controllers.

The model-based tracking control approaches can be divided
into kinematic and dynamic based methods. Sliding mode
control (SMC) is a well-known control scheme which has been
successfully and widely applied for systems with uncertainties
[2]. The reason for the popularity of this method is one of its
most attractive features: its robustness to external disturbances,
parameter variations and uncertainties [3], [4].

The sliding mode control design is done in two steps.
The first one is to choose a manifold in the state space that
ensures the state trajectories to remain on it. The second one

is to design a discontinuous state-feedback controller able to
force the system to reach the state on the manifold in finite
time. However, the drawback of the SMC is the presence of
the chattering effect, caused by the switching frequency of
the control. The high frequency components of the control
law propagate through the system, excite the unmodeled fast
dynamics and therefore cause undesired oscillations. In fact,
this can degrade the system performances or may even lead
to instability.

In the literature, three main approaches have been presented
to reduce the chattering effects. The first class of methods
consists in the use of the saturation control instead of the
discontinuous one (signum function). The second class of
methods is based on the use of a system observer. The use of
the high order sliding mode controllers to reduce the chartering
phenomenon and to keep the main advantages of the original
approach of the SMC is the third class of methods used to
eliminate chattering [5], [6].

The high order sliding mode uses differentiators and sliding
mode manifold estimators (as shown in [7]) to maintain the
robustness of the system. The second order sliding mode
control (such as the super-twisting sliding mode control) is
relative simple to implement, it provides good robustness to
external disturbances. In recent years, super-twisting sliding
mode control theory has become very popular and therefore,
it has been widely used to control systems with uncertainties.
The super-twisting sliding mode control allows finite time
convergence of the sliding variable as well as its derivative
to zero [6], [8], [9].

The sophisticated control law guarantees the robustness but
for the price of increasing the transient time. To improve the
transient time of this control approach, recently, as shown in
[10], a Lyapunov function was constructed. This function is
used to estimate the convergence time for super twisting algo-
rithm [11]. In [12], a multivariable super twisting structure is
presented, to analyse the stability using the ideas of Lyapunov
function given in [10].

This paper is organized as follows: Section II is dedicated
to the analysis of a mathematical model for the trajectory
tracking errors of a mobile robot. In section III, a Second
Order Sliding Mode Controller is designed with the aim of
providing robustness for parametric uncertainties. Simulation
and experimental results are given in section IV, in order to
illustrate the feasibility and the performance of the proposed

2015 19th International Conference on System Theory, Control and Computing (ICSTCC), October 14-16, Cheile Gradistei, Romania

978-1-4799-8481-7/15/$31.00 ©2015 IEEE 87

Fig. 1. Trajectory-tracking configuration

scheme. Finally, conclusions of this work are drawn.

II. TRAJECTORY-TRACKING ERROR MODELS

Figure 1 presents a wheeled mobile robots with two diamet-
rically opposed drive wheels (with radius R). Pr is the origin
of the mobile robot coordinates system. L is the length of the
axis between the drive wheels. ωR and ωL are the angular
velocities of the right and left wheels of the mobile robot.
Let the pose of the mobile robot be defined by the vector
qr = [xr, yr, θr]

T , where [xr, yr]
T denotes the WMR position

on the plane and θr the heading angle with respect to the X-
axis. In addition, vr denotes the linear velocity of the mobile
robot, and ωr the angular velocity around the vertical axis.

For an mobile robot rolling on a horizontal plane without
slipping, the kinematic model can be expressed by: ẋr

ẏr
θ̇r

 =

 cos(θr) 0
sin(θr) 0
0 1

 ·
[

vr
ωr

]
(1)

which represents a nonlinear system.
It can be assumed that the desired trajectory qd(t) =

[xd(t), yd(t), θd(t)]
T is generated by a virtual WMR (see Fig.

1). The kinematic relationship between the virtual mobile robot
configuration qd(t) and the corresponding desired velocity
inputs [vd(t), ωd(t)]

T is analog with 1: ẋd

ẏd
θ̇d

 =

 cos(θd) 0
sin(θd) 0
0 1

 ·
[

vd
ωd

]
(2)

When a real mobile robot is controlled to move on a desired
path it exhibits some tracking errors. This tracking errors,
expressed in terms of the mobile robot coordinate system, as
shown in Fig. 1, is given by

Lx = xd − xr − d · cos(θr)
Ly = yd − yr − d · sin(θr)
θe = θd − θr

(3)

The distance Lh between the real robot and virtual robot is
measured from the center of the two rear wheels of the virtual

robot to the front of the real robot (offset by d from the center
of the two rear wheels in the axis), and the bearing angle φ is
measured from the line of orientation of the virtual robot to
the distance line between the two robots (real and virtual).

Lh2 = L2
x + L2

y

φ = arctan2(Ly, Lx)− θd + π
(4)

Differentiating equations (3) we have:

L̇x = ẋd − ẋr + d · θ̇r · sin(θr)
L̇y = ẏd − ẏr − d · θ̇r · cos(θr)

(5)

Substituting (1), (2) in (5) we have:

L̇x = vd · cos(θd)− vr · cos(θr) + d · ωr · sin(θr)
L̇y = vd · sin(θd)− vr · sin(θr)− d · ωr · cos(θr)

(6)

Define γ = θd− θr +φ. Differentiating (4), substituting (6)
and using trigonometric identities

L̇h = −vd · cos(φ) + vr · cos(γ) + d · ωr · sin(γ)

φ̇ = 1
Lh · (vd · sin(φ)− vr · sin(γ)+

+d · ωr · cos(γ)− Lh · ωd)

(7)

The tracking errors are Lhe = Lh−Lhd and φe = φ−φd,
respectively. The system (7) can be re-written as

ė = A(e, t) +B(e, t) · u (8)

where u = [vr, ωr]
T is the input, e = [Lhe, φe]

T is the output
and

A(e, t) =

 −vd · cos(φe + φd)

vd·sin(φe+φd)−(Lhe+Lhd)·ωd

Lhe+Lhd

B(e, t) =

 cos(γe) d · sin(γe)

−sin(γe)
Lhe+Lhd

d·cos(γe)
Lhe+Lhd

(9)

where γe = θe + φe + φd.
Because Lh > 0 and d > 0, the matrix B is nonsingular.

det(B) = det

 cos(γe) d · sin(γe)

−sin(γe)
Lhe+Lhd

d·cos(γe)
Lhe+Lhd

 =
d

Lh
6= 0 (10)

III. SECOND-ORDER SLIDING MODE CONTROLLER

The drawback of the first order sliding mode control is the
chattering phenomenon. As a solution to resolve this problem,
a second order sliding mode (SSMC) is proposed. In fact, the
second order sliding mode appears as an effective application
to reduce the chattering phenomenon and the switching control
signals, with higher relative degrees in finite time.

SSMC controllers require the knowledge of values of the
derivatives except for the super twisting algorithm (STW). The
STW is a continuous SM algorithm ensuring main properties
of the first order sliding mode control for systems with
Lipschitz continuous matched uncertainties or disturbances
with bounded gradients.

88

The design procedure of SMC technique can be divided into
two steps. The first step is to design the sliding surface such
that the system response in the sliding mode has the desired
properties. The second step is to design the control law to fetch
the trajectory of the system onto the surface for a sliding mode
to be realized in finite time.

Trajectories on the two sliding planes are characterized by
twisting around the origin, but the continuous control law
uc(t) = [vc(t), ωc(t)]

T is constituted by two terms. The first
one is defined by the discontinuous time derivative and the
second one is a continuous function of the available sliding
variable [13].

The proposed controller is given by the following

uc(t) =
u1(t)− ke · e(t)−A(e, t)

B(e, t)
(11)

where the super twisting controller

u1(t) = −k1 · sign(s(t)) · |s(t)|1/2 − k2 · s(t) + σ(t) (12)

Variations of the term σ are described by:

σ̇(t) = −k3 · sign(s(t))− k4 · s(t) (13)

where k1, ..., k4 are positive scalars, and

s(t) = e(t) + ke ·
∫ t

0

e(τ) · dτ (14)

For the stability proof, the Lyapunov function candidate
given in [12] is used:

V = 2 · k3 · |s|+ k4 · sT · s+ 1

2
σT · σ + ζT · ζ (15)

where
ζ = −k1 · sign(s) · |s|1/2 + k2 · s− σ (16)

As shown in papers [12] and [14] V̇ ≤ 0 is true if only if
the following conditions are satisfied:

k22 = 2 · k4
4 · k21 = 5

2 · k3
(17)

IV. SIMULATION AND EXPERIMENTAL RESULTS

Nowadays, the path a WMR has to follow is known a priori.
More precisely, the GPS coordinates of intermediate points of
the path are the input data for the path. These points are usually
situated on the median axis of the road (represented with the
dashed line in Fig. 2). The WMR has to keep the distance and
the angle to road axis represented as the desired trajectory in
Fig. 1.

There are some other applications where the WMR has to
follow the vehicle before it (e.g. formation control). For these
applications, a distance sensor (laser or optical-video) has to
monitor the distance to the before vehicle.

In this section, some simulations and experimental tests are
presented. The parameters used in this section are: k1 = 0.05,
k2 = 0.1, k3 = 0.004, k4 = 0.005, ke(1) = 1.25, ke(2) =
0.35 and d = 0.2.

0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

Path

x [m]

y
 [

m
]

A(0,0)

 →
B(1.5,0)

C(2,0.5) ↑

D(2,1.5)

E(2.5,2)

 →

F(4,2)

G(4.5,1.5)

 ↓
H(4.5,0.5)

I(5,0)

 →

J(7,0)

0 10 20 30 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time [s]

V
e

lo
c
it
y

Linear velocity [m/s]

Angular velocity [rad/s]

Fig. 2. Path example and desired velocities (linear and angular) calculated
by the trajectory planner

In Fig. 3 is represented the control arhitecture used for
the implementation of the SSMC with super-twisting control
algorithm.

The trajectory planning process can be divided into two
separate steps. First, a continuous collision-free path is gener-
ated. In a second step, called trajectory generation, a velocity
profile along the path is determined. The method used to
generate a velocity profile for any two-dimensional path in
static environments is similar with the one presented in [15].

Figure 2 shows an example of a planned trajectory using
the method described in [15] were the goal was to obtain a

Fig. 3. Control arhitecture

89

Fig. 4. The MobileSim simulator

0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

Path of mobile robot

X [m]

Y
 [

m
]

Desired

Robot

Fig. 5. Simulation results using the path example

0 10 20 30 40 50
−0.5

0

0.5
The tracking errors

Time [s]

L
h

e
 [

m
]

0 10 20 30 40 50
−200

0

200

Time [s]

φ
e
 [

d
e

g
re

e
]

Fig. 6. The traking errors for the path example

smooth path of mobile robot.
In Fig. 3 the SSMC block delivers the velocities command

[vc, ωc]
T (the linear and angular commands). These commands

are transformed in wheel velocities command for the right and

0 10 20 30 40 50
−0.2

0

0.2

0.4

Linear velocity

Time [s]

V
e

lo
c
it
y
 [

m
/s

]

Command

Robot

0 10 20 30 40 50
−1

0

1

Angular velocity

Time [s]

V
e

lo
c
it
y
 [

ra
d

/s
]

Command

Robot

Fig. 7. Linear and angular velocities (command and robot) for the path
example

the left wheel:[
ωR

ωL

]
=

[
1
R

L
R

1
R

−L
R

]
·
[

vc
ωc

]
(18)

The right and the left wheel commands are sent to the
mobile robot. The encoder measures are used in the mobile
robot. The odometric computations are then as entries for the
Error Calculation block (see Fig. 2). The differences between
the measured and reference poses are passed to the tracking
controller (SSMC block) after Error Calculation block.

A. Simulation Results

To simulate the proposed algorithm, the MobileSim soft-
ware [16] was used. In Fig. 4 the simulated trajectory of
the robot is presented. MobileSim is software for simulating
real mobile robots and their environments, for debugging and
experimentation with ARIA.

Written in the C++ language, ARIA (ActivMedia Robotics
Interface for Application) is a client-side software for easy,
high-performance access and management of the robot server,
as well as other robot accessories like sensors and effectors. Its
versatility and flexibility makes ARIA an excellent foundation
for high-level robotics applications.

The trajectory generated by the Trajectory Planner block,
from the control arhitecture used for the simulation is pre-
sented in Fig. 3.

In Fig. 5 is easy to observe that the mobile robot moves
along the desired trajectory. During this movement the WMR
keeps the desired distance (Lhd = 0.3m) and desired angle
(φd = −135◦) to the median axis of the path.

The tracking errors presented in Figure 6 are situated in
small neighbourhood of zero. Figures 7 show the evolution of
the linear and angular velocities, both for the command and
the robot. One can observe that the largest differences between
the command velocities and the robot velocities are in the
begining of the simulation. Simulation shows small errors for
both linear and angular velocities.

90

B. Experimental Results

Good simulation results encouraged real time implemen-
tation. A Pioneer 3-DX differential-drive mobile robot man-
ufactured by MobileRobots Inc was used for experimental
implementation. Optical encoders are installed on the driving
motor axes. The encoder reading is used to measure the robot
velocities, the robot position and orientation (by fusing the
encoder reading with the gyro measurement).

The proposed algorithm is written in C++ language and runs
in real-time with a sample time Ts = 100ms on an embedded
PC.

In Fig. 8 is easy to observe that the mobile robot moves
along the desired trajectory and the real trajectory is almost
equal with the trajectory obtained in simulation. During this
movement the WMR keeps the desired distance (Lhd = 0.3m)
and desired angle (φd = −135◦) to the median axis of the path.

The tracking errors presented in Figure 9 are situated in
small neighbourhood of zero. Figures 10 show the evolution
of the linear and angular velocities, both for the command and
the robot. One can observe that the largest differences between
the command velocities and the robot velocities are in the
begining of the real-time implementation. The experimental

0 1 2 3 4 5 6 7

−1

0

1

2

3

Path of mobile robot

X [m]

Y
 [

m
]

 Desired

Robot (sim)

Robot (real)

Fig. 8. Experimental and simulation results using the path example

0 10 20 30 40 50
−0.5

0

0.5
The tracking errors

Time [s]

L
h

e
 [

m
]

0 10 20 30 40 50
−200

0

200

Time [s]

φ
e
 [

d
e

g
re

e
]

Fig. 9. The traking errors for the path example (using real robot)

0 10 20 30 40 50
−0.2

0

0.2

0.4

Linear velocity

Time [s]

V
e

lo
c
it
y
 [

m
/s

]

Command

Real robot

0 10 20 30 40 50
−1

0

1

Angular velocity

Time [s]

V
e

lo
c
it
y
 [

ra
d

/s
]

Command

Real robot

Fig. 10. Linear and angular velocities (command and robot) for the path
example (using real robot)

test shows small errors for both linear and angular velocities.

Figures 11 show the comparison between the commands
obtained in real-time experiment versus simulation.

0 10 20 30 40 50
−0.2

0

0.2

0.4

Time [s]

L
in

e
a

r
v
e

lo
c
it
y
 [

m
/s

]

Commad (sim)

Command (real)

0 10 20 30 40 50
−1

0

1

Time [s]

A
n

g
u

la
r

v
e

lo
c
it
y
 [

ra
d

/s
]

 Commad (sim)

Command (real)

1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

Time [s]

L
in

e
a

r
v
e

lo
c
it
y
 [

m
/s

]

Commad (sim)

Command (real)

19 20 21 22 23
−1

−0.8

−0.6

Time [s]

A
n

g
u

la
r

v
e

lo
c
it
y
 [

ra
d

/s
]

Commad (sim)

Command (real)

Fig. 11. Comparison between the commands (simulations vs real-time
experiments) and zoom in

91

V. CONCLUSION

This work presented a super-twisting sliding mode structure
for a multivariable system. The strategy using super-twisting
control algorithm proved to able to eliminate the chattering
problem, thus improving the performance of the trajectory-
tracking control. The maximum linear speed equal to 0.5m/s
is not exceeded either in simulation or in real time imple-
mentation. The differences between the linear and angular
velocities are greater in case of the real time robot control.
These differences are due to the robot dynamics (inertia and
friction) when executing a sharp turn.

The simulation is done for a planned trajectory with more
than one sharp turn. It is known that classical trajectory
tracking control algorithms generate high tracking errors for
sharp turns. The simulation results for the proposed algorithm
proved the performances in eliminating the chattering and in
reducing the tracking errors which are situated in the vicinity
of zero.

The simulation showed better performance and the experi-
mental results proved the practical use of the proposed con-
troller. The proposed algorithm proved to be easy to implement
on the real robot. Real time implementation of this algorithm
demonstrated the simulation performances were correct, only
the differences between the command velocities and the real
velocities of the robot slightly increased.

ACKNOWLEDGMENT

The work of Razvan Solea has been funded by the Sec-
toral Operational Programme Human Resources Development
2007-2013 of the Ministry of European Funds through the
Financial Agreement POSDRU/159/1.5/S/132397.

The work was supported by the Romanian Executive Unit
of Funding Higher Education, Research, Development and In-
novation (UEFISCDI), project number PN-II-PT-PCCA-2013-
4-0686.

REFERENCES

[1] R. Siegwart, I. R. Nourbakhsh and D. Scaramuzza, Introduction to
Autonomous Mobile Robots, second edition, The MIT Press Cambridge,
Massachusetts London, England, 2011.

[2] H. K. Khalil, Nonlinear Systems - Third Edition, Prentice Hall, 2002.
[3] T. Yu and H. Sun Variable Structure Control of Spherical Robots with

Exponential Reaching Law, Studies in System Science, Vol. 2, pp. 63-67,
2014.

[4] A. Polyakov and A. Poznyak, Reaching Time Estimation for Super-
Twisting Second Order Sliding Mode Controller via Lyapunov Function
Designing, IEEE Transactions on Automatic Control, Vol. 54(8), pp.
1951-1955, 2009.

[5] A. Levant, Higher-Order Sliding Modes, Differentiation and Output-
Feedback Control, International Journal of Control, Vol. 76(9-10), pp.
924941, 2003.

[6] T. Gonzalez, J. A. Moreno and L. Fridman, Variable Gain Super-
Twisting Sliding Mode Control, IEEE Transactions on Automatic Con-
trol, Vol. 57(8), pp. 2100-2105, 2012.

[7] L. Luque-Vegan, B.Castillo-Toledo, A.G.Loukianov, Robust block sec-
ond order sliding mode control for a quadrotor, Journal of the Franklin
Institute, Vol. 349, pp.719739, 2012.

[8] A. Kareem and M. F. Azeem, Novel Adaptive Super-Twisting Sliding
Mode Controller with a Single Input-Single Output Fuzzy Logic Control
based Moving Sliding Surface, International Journal of Control and
Automation, Vol. 6(3), pp.183-198, 2013.

[9] J.P. Barbot, M. Djemai, T. Floquet and W. Perruquetti, Stabilization of
a unicycle-type mobile robot using higher order sliding mode control,
European Control Conference (ECC), pp. 519-523, 2003.

[10] J. A. Moreno and M. Osorio. Strict Lyapunov Functions for the Super-
Twisting Algorithm, IEEE Transactions on Automatic Control, Vol.
57(4), pp. 10351040, 2012.

[11] J.A. Moreno, M. Osorio, A Lyapunov approach to second-order sliding
mode controllers and observers, Proceedings of 47th IEEE Conference
on Decision and Control (CDC 2008), pp. 2856-2861, 2008.

[12] I. Nagesha and C. Edwardsb, Technical Communique: A Multivariable
Super-twisting Sliding Mode Approach, Journal Automatica (Journal of
IFAC), Vol. 50(3), pp. 984-988, 2014.

[13] Y. Shtessel, C. Edwards, L. Fridman and A. Levant, Sliding Mode
Control and Observation, Publisher Springer New York Heidelberg
Dordrecht London, ISBN 978-0-8176-4892-3, 2010.

[14] S. Mahjoub, F. Mnif and N. Derbel, Second-order sliding mode control
applied to inverted pendulum, 14th International Conference on Sciences
and Techniques of Automatic Control and Computer Engineering (STA),
pp. 269 - 273, 2013.

[15] R. Solea and U. Nunes, Trajectory planning and sliding-mode control
based trajectory-tracking for cybercars, Integrated Computer-Aided En-
gineering, IOS Press, Vol. 14(1), pp. 3347, 2007.

[16] MobileRobots/ActivMedia (2005). MobileSim. URL:
http://robots.mobilerobots.com/wiki/MobileSim

92

