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Abstract — An adaptive gain smooth sliding controller, based
on a smooth sliding observer, is developed to control
nonlinear SISO affine systems with uncertain parameters and
state functions. Furthermore, an adaptively updated
parameter term is introduced in the steady state space model
of the controlled system in order to obtain useful information
despite fault detection. Using a sliding observer with smooth
switching function and adaptive gain increases the robustness
w.r.t. uncertainties. The adaptive gains smooth sliding
observer and controller are designed to fulfill the
attractiveness condition on the corresponding switching
surfaces. An application to a single arm, flexible joint robot is
presented. In order to alleviate chattering in the observer and
the controller, a parameterized tangent hyperbolic is used as
a switching function, instead of a pure relay one. The gain of
the switching function is adaptively updated, depending on
the estimation error or on tracking error.

I. INTRODUCTION

The state and parameter uncertainties in the model of
SISO non-linear systems and the deviations of the
parameters from their nominal values lead to difficulties in
the parameter identification and the state estimation. All of
these make absolutely necessary the design of the
controller and/or the observer such as the closed loop
robustness (stability with small tracking and estimation
errors) is achieved. It is well known that the robustness to
model parameter uncertainties and external disturbances of
the closed loop can be achieved with variable structure
controller. Maintaining the system on a sliding surface
weakens the influence of the uncertainties in the closed
loop performances and quickly leads to an equilibrium
point. In [2] an adaptive variable structure controller with
parameterized sigmoid as a switching function and
adaptive modifications of its amplitude (denoted A -
modification) is used, instead of a pure relay one with
constant gain. In this paper, a parameterized tangent
hyperbolic function (denoted k-tanh) is used as a switching
function to alleviate, or/and eliminate chattering.
Decreasing the parameter k& in the switching function
makes the gain around zero smaller and the unmodelled
dynamics are less excited at high frequency. Also, the
delay due to the control input calculus and the finite rate of
switching can lead to chattering. Using the A -modification
into the gain of the k& -tanh switching function, smoothes
the response and increases the robustness to structural
uncertainties. The adaptive gain is time depending, with
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the norm of the corresponding sliding surface, as an input.
The combinations of variable structure observer-controller
for several particular nonlinear systems with application to
robot manipulators are presented in [1] and [8]. Results
concerning the exponential convergence of adaptive
observer under persistent excitation conditions applied to a
class of non-linear systems are shown in [5] and [6]. In
[7], the persistent excitation condition to the adaptive
observer design is relaxed and an extension to non-linear
external perturbed systems is presented. A further
parameter term, which may be adaptively updated, is
considered in order to obtain information about parameter
deviations from their nominal values.

The main contributions of this paper concern the
smooth sliding observer-controller, the choice of the gains
(the gains of linear part and of the variable structure part,
respectively), the updating law of variable structure gains,
and, finally, the state and tracking error bounds. The main
advantage over other existing technique in the flexible
joint robot control is that by using adaptive gain, small
estimation and tracking errors can be obtained, with an
appropriate choice of the initial condition in the updating
law. In addition, parameterized smooth switching function
keeps the performances in the presence of uncertainties
and measurements noise, without infinite rate of switching.

II. SYSTEMS IN ADAPTIVE OBSERVER FORM
Consider the SISO nonlinear system

K=t()ralhe Tailoup, y=h)

where x e R", u,yeR, f,g:R" > R", h:R" >R,
np]T, qi :R" xR > R".
The following assumptions hold:

AL rank[dh(x) dLh(x)-- d(Lr;_lh(x))J:n’

vx e R"

where Lifh is the ith-order Lie derivative of the smooth

neRP, n:[nl

function h along the vector field f;
A.2.2. Let r be the vector field, which satisfies

<[dh d(L‘}‘lh)]T,r>=[0 S 2

and adifr, ad%rJ:O, 0<i,j<n-1,



where adifr represents the ith-order Lie bracket [f,r] of
the two vector fields f and r;

A23. Lg, ad}rJ: 0, 0<j-2<n-2;

A.2.4. the vector fields adifr, 0<i<n-1 are
complete;

A.2.5. lqi, adifrJ: 0, 0<i<p,0

n .
. =B.(h add!
A2.6. qi (X» u) Bi ( (x), u)jglbn—ﬁlad(—f)r(x)a
1<i<p

Accordingly with Lemma II.1 from [6], there exists a
global space diffeomorphism

c=1()=hx) Lebls) < RG] Thg)=08
which tral_lsforms the system (1) into

j<n-2;

3)

01 0 0
0 0 1 0
=i ey B
000 1 =l
000 - 0]
=AL+y,(yu+¥(y,u)n (%)
y=[1 0 0 - o0f=cc¢
where  y, :R>R", ¥, RxR->R",i=1,...,p are

smooth functions. Moreover, based on [4] and [6], by
using a filtered transformation

2= C-M(t)r, ©)
the system (5) can be transformed in an adaptive observer

form

T

z2=Az+y,(yu+bp! (thr, y=clz (7)

where M, b, and [ are expressed hereafter. The matrix
MeR™ can be expressed as M= [0 NT ]T , with
Ne ‘R(n_])Xp unique solution of the differential equation
N=AyN+By¥(y,ul N(0)=N (8)
where Ay € g (n-1x(n-1), By € RO 46 chosen as in

[6]. The beR™,b=[l by, b,]" has

constant elements which are the coefficients of Hurwitz
n-2

vector
polynomial: s"™! +b,s" 2 +...+b, . Replacing (6) in (8)
and using the above notations, the matrix M can be written
as the unique solution of the differential equation

. 0
T T
M= (AC —be, AC)M+(I—bcC }P(y,u), M(0)= {N(O)} 9)
The matrix Ay being a Hurwitz matrix, then the matrices
N(t) and M(t) are bounded if the control input u and the

function ¥(y)are bounded. The vector Be RY is a
continuous bounded function and can be expressed as:

BE)=[B1 (-, By =cTAM+cl¥(y,u)  (10)

3538

Remark 2.1. If the assumptions A.2.2 and A.2.3 hold,
then each element v ; (y)u, i=1,...,n is independent of
x. If not, some or all v ; (y) may depend of z (4 (2, y)).
In this case the system (7) can be written as

2=Acztyo(zylutbpl (vuth, y=cgz
which, obviously, it is not in adaptive observer form.

Remark 2.2. If assumption A.2.6 holds, the system (1)
can be transformed directly in the adaptive observer form
(7) by using the global diffeomorphism (4), without
passing trough the intermediary transformed form (5).

Let p be the integer defined as the global relative
degree of the system (1). From the definition 4.1.2 of [5],
the global relative degree is the integer such that:

L,Lih(x)=0, Vxe®R",0<i<p-2

(11

| (12)
L L8 h(x)#0, vxe®R"

Obviously, the transformed systems (4) and (7) have the
same relative degree as the original system (1). Taking
into account the relative degree, the elements of the vector
termy (y)u , from (7) or (11), can be written as:

Yoiu=0, i=L....p-1 wyu= Lngf_lh(x)u,
13)
j=ps.on—1, you=L%h(x)+ LgLI;lh(x)u
IIT. ADAPTIVE GAIN SMOOTH SLIDING OBSERVER

The attention is focused on the system (1) and on its
transformed form (11). A smooth sliding observer, with
constant or adaptive gain is proposed in this section. All
the uncertainties are considered on the function f and g.

Define the estimates of fand gas [ ¢ .

Remark 3.1. The transformed system (11) is more
general than the system (7), although the last one is in
adaptive observer form.

If S, =z —2z;is chosen as the sliding surface, then we

will proof that the first p state estimate errors are
ultimately bounded, while the others n—p errors are

bounded in the presence of the model uncertainties into the
functions f (x) and g(x) . Consider the following

assumptions:
A.3.1. The functions f, g, h are all of C" —class;

A.3.2. The transformation, introduced by (4), is a global
diffeomorphism;

A. 3.3. The relative degree of the system, introduced by
(12), fulfils the inequality p<n ;

A.3.4. The uncertainties in the functions f (x) and

g(x), defined as
) =L L)~ LU & (i, th = p-on-2
» (%2, )= Ljh(x)-L7h()

A (14)

+L Lt h(xu(k, t)-L gLI%_lh(fc)u(i, t)



fulfill the following conditions:
o0 ay Ay off|<a wzo as)

(16)

where T(x) is a known diffeomorphism which allows the

A (x, %, t) < gTE) =T+, Vt=0

inverse and a, €, are positive constants.
A.3.5. The vector function, B(t)=B(y,u,t) is uniformly
bounded for every bounded pair (y, u).

Theorem 3.1. (Sliding observer convergence).
Consider the systems (1), (11) or (7), the last one in the

adaptive observer form, f ,¢& the available estimates of the
functions f,g and the uncertainties fulfilling (15), (16),
then, one can design the adaptive sliding observer

2y =21 —vi(2) —21)-0; tanh[k, (2, -2, )]
+bpln, i=1,...,p-1

2 =230 -7(1-21)-0; tanh[ko (2 2, )]
+L§Ljf_1h(T_1(2))1+bjBTn, j=p,.on-1
20 =—Yn(21-2)-0, tanh[k, (2, -7, )]
+L‘%h(T’l (2))+LQLI%’1h(T’1 (2))J+anTTE

(17)

having the evolution on a neighborhood of the sliding
surface, i.e. S, =T (x)—i"l ()2): z1—21 =0, where k, is

) ’YH]T

(18)

can be computed such that A +ch is a stable matrix.

a positive constant. The vector gain I = [yl ,
with the expression

'=-A.b-cb, ceR,,

The vector gain © = [91, -, 0y ]T can be chosen such
that the error in the first p transformed state estimates is

ultimately bounded by an arbitrarily small constant and the
error of the other n—p states is bounded.
Proof: The dynamics of the state estimation error is
Zi = Zis1 —Vi7Z - 0; tanh(k, 7, ), i=1,...,p—1
~ ~ ~ -1
Zj,1—Yjz1 —9; tanh(kozl )—LgLJf h(x)u

Zj:

+LéLj£flh(>2)u, i=p,..,n—1 (19)

En =—YnZ -0, tanh(kozl)_LI}h(X)
_LgL‘}_lh(X)llJrLr%h(’A‘)“L L{;,L‘%‘lh(ﬁ)u

With the gain I' computed as in (18), the polynomial
identity holds

(s+c)(sn71 +blsn*2 +---+bn): sy st

+ cee + ’Yn

(20)

which, due to the n-1 zero-pole cancellations, leads to the
first order strictly real positive transfer function

-1
c;f [sI—(AC +ch )] b= (s+0)_l . Because A, +ch isa
stable matrix which fulfils the strictly positive real
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condition (condition B.1.2 from [5]), the Meyer-Kalman-
Yacubovich Lemma B.2.2 and the Theorem B.2.2, [5],
may be applied. Consequently, the linear part of the state
estimation dynamics, from (18), is globally asymptotically
stable, i.e.

lim"z(t)—i(tm:o, vz, eR", meRP.
t—0

The gain 0; has to be chosen such that the sliding

condition is fulfilled (the attractiveness condition)
S,S, <0. This condition leads to
01 +71|z1 - 21| >|z2 ~2,], V=0 1)

Choosing the gain 0; such as 6, >|z, —zy| Vt20, the

inequality (21) is satisfied with the equivalent state error
dynamics
L~ 91 ~
Zi = Ziy1 — 22>
0,

i=1...,p—1

. 0; . .

% =% -5t 7 Lyl "h(x)u(%, 1)
1

+LéLJ;1h(§()u(§<, t) j=p,....n-1 (22)

_3_1;22 L2 h(x)- L L2 h(x)u(&. 1)

+Lr%h(>2)+ LéL?lh(i)u(ﬁ, t)

Zp

The gains 0; can be chosen such that the following

polynomial identity holds

On
+.+—=

1 0,
where 0 is a positive constant. Changing the variables

[V2 02y e“‘zvn]T, i=2,...,n (24)

and taking into account (16), leads to the last n—1 error
equations from (17)

1 6, -
n1+_25n2

s s+ (23)

Zi:

. Ap A, ]
v=0Dv+|0 - 0 L (25)
ep—Z en—Z
1
-cl 1 0
_ : oo (n—1)x(n-1)
D= T eR (26)
n-1 .
-cil oo 0

Define the Lyapunov function V = vIPv with the
positive definite matrix P e g (0-Dx(0-1) o5 the solution of

the equation PD + D Tp=—1. Expressing its derivative

. A
V=6 +2vTP0 ... o 1]' pre
A T (27)
T [ -1
+2v P 0 0 GP*2 6:11—73 0

using (15), (16), the definition of v and the inequality
vIPv< A max P "V" , the following inequality holds



V<o +2Me, ||[ +s||v||j+z||v||ﬂ 28)

where P, is the last column of matrix P. By adding

p.||v||2, pn>0 to both sides of (28), one obtains the second
order inequality
Vo u||v||2 <

2
2t

which is satisfied for
2 QD"Pn " + A maxpa P

V|| = .
M0 o -
Due to the Corollary 5.3 of Theorem 5.1 from [3], there
exists a finite time t; such that
2

oP U kminP (9—28||Pn "—],lbn P

The definition of the vectorv, from (24), and the above
inequality lead to the conclusion that

7 (0] = [T (R)-Ti (x) < 07 ] <

~o- 2P, |- w
Pal, maxpajllvu

el’12

(29)

vt >t (30)

i2 n—p
SZ 61 xmaxP (p”Pn||-'—}\'1'1'13'X1:’0Le s (31)
0°72 \ Aminp (9—28"Pn "_“bn—p
VtZtl, i=2,...,n
Therefore, all the state observation errors in the

transformed space converge to a bounded region, and the
first p errors could be arbitrarily small for sufficiently
large 6 .

Remark 3.2. The upper bounds of the state estimation
errors, given by (31), allow adaptive gains in sliding

observer (17). As in [2], the gains 0;,i=1,---,n become
time depending, including A -modification
0;(t)=—20;0; (t)- 91| Z1 (¢) . (32)

where A.;,3, are positive constants and ei(to) fulfils

the polynomial identity (23). The dynamics (32) force
0;(t) to negative values. They are almost zero when the

observer is in the neighbourhood of the sliding surface.

IV. ADAPTIVE GAIN SLIDING CONTROLLER

The sliding controller, presented hereafter, is an
extension of the one from [8] to nonlinear affine systems
with the relative degree strictly less than the state
dimension. Let choose the controller sliding surface as:

¢ = gii(ii —yg_l))

with ipzl and &;,i=1--,

(33)

p—1 Hurwitz coefficients.
The reference to be tracked y, is assumed to be a

C" function. The expression of the sliding controller
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ool | ERE P - B -t
e

S, -1 tanh(chC)
(34)
is derived from the expression of feedback linearization
controller. The gain 1 has to be computed in order to

fulfill the attractiveness of the sliding surface.k is a

positive constant. The derivative of the controller sliding
surface (33) is

c =—2Z Zﬁl —(I)S —ntanh(k S )

1

(35)

where the gain ¢ is chosen to maintain éc bounded

during the observer transient. Applying (31) and assuming
that the gains O; are chosen as (23), the controller

attractiveness condition §C§C <0 is satisfied if

2 kmaXP (P"Pn ||+7\'maxpa6n_p i-1
9
002\ Rinr (0 26]p, |—p " P IZF‘

The equivalent dynamics during sliding éc ~0 can
& (1) _ (-1}, &, ~ -

expressed as Y &;ly -yy /)= -2 ¢&;z; .Assuming the
i=1 i=1

gains &; are the coefficients of a polynomial with all

stable and real roots, and using the bounds of the state
errors (31), the tracking error fulfils the inequality

Yr(t] < 2 A max P (p"Pn ""_}"maXPOLelFp
£10° \ 2minp (6-26|P, [—u)p™
for t sufficiently large

Remark 4.1. If the variable structure term in (33) has
the gain adaptively updated by ). -modification

A(t)==2en(t)-9cfSe| (37)
with A., 9. positive constants, then the tracking error will

L. ni
>&i0

i=1
(36)

Iy(t)-

reduce asymptotically, By choosing the value of the
constant k., greater than k., the smooth switching
function of the observer is closer to a pure relay than the
smooth switching function of the controller. Therefore, the
observer converges faster than the controller with small
estimate error.

V. APPLICATION TO A FLEXIBLE JOINT ROBOT
MANIPULATOR

The dynamic equations of a single link robot arm with a
revolute elastic joint (robot with flexible joints) rotating in
a vertical plane are

Jady +Fody +k(a; —q2)+ Melsing; =0
Tmiz +Fnd2 —k(q; -q2)=u, y=q,
whereq; and q, are the link displacement angle and the

(3%)

rotor (motor shaft) displacement angle, respectively. The
link inertia J,, the motor rotor inertiaJ,, the elastic



constant k, the mass link M, the gravity constant g, the
centre of mass 1 and the viscous friction coefficients F,,
F,, are positive constant parameters. The control u is the
torque delivered by the motor. Choosing as state variables
X;=q;, Xp=(;, X3=qp, neglecting the viscous
friction of the arm, considering the position of the motor
shaft as the measured output and introducing the vector

term bBT(y,u,t)at:b[y u][l 1]T
equations can be expressed as:

, then the system state

X4 Xy 0
X5 _ —Mgl/Jasin(xl)—k/Ja(xl—x3)+ 0 u
X3 X4 0
X4 ~Fpy /T nxs +k /T (x) —x3) 1/7
u+y
)l b TR v
3(u+y) 2408 BTE y=X3
u+y
(39)
The following parameters and uncertainties are

considered (note that the matching conditions are not

fulfilled: M=5, g=10, 1=05, k=200,J, =
J,, =005, F, =0.1, K, =200, K, =4500, B, =2,
L =006, M, =30, . =300, o =4500,
B, =15, where: Ma_M—gl, Kazi, szi,
a Ja m
F
B, =-M
Jrn

The Lie derivatives, Lifh(x),i:O,m,n, are:h(x)=x3,
th(x): X4, szh(x)z -B,X4 +Km(x1 -x3),
L3fh(x)=(Bﬁ1 —Km)x4 ~B, K, (x; —x3)+K,x,
Lih(x)= (2Bme —B?n)x4 ~M, K, sin(x;)

+Km(Br2n _Km _Kaxxl _XS)_BmeX2

The Lie derivatives, LgLifh(x),i =0,---,n—1, are:
1 B
Lgh(x)=0, LyLsh(x)= T L, Lh(x)= _f’

B2 —K
LgLih(x)z%.
m

One remarks that the system is of order 4 (n=4) and of
relative degree two (p=2).

The state transformation, defined in (4), is
X3
X4
—BmXy +Km(xl _XS)
(B Ky ka4 —BpKy (x) —x3)+K x5

which has the following inverse transform

(40)

2
m
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_Z3 +Bm22 "erZl 1
Km
z4+Bhz3+K 2
X:T—I(Z): 4 m%3 m%2 (41)
Km
Z]
L 22 _
The transformed state equations are
. . 1
Z) =2y +u+y, Zp =123 +—u+3(u+y)
Jm
B
7y =724 ——2u+3(u+y)
Jl’l’l
. [ z3+Bpzy + K7 (42)
=-M,K, sin -BK,z,
Km
BZ
(K, +K )23 —Byzg + My +(u+y)

m
In order to alleviate the chattering in the state estimates
and control input, a parameterized tangent hyperbolic will
be used as switching function and gain adaptively updated
in the observer, as in (32), and in the controller as in (37).

Choosing b = [l 33 l]T and ¢ =10, the expression
(18) yields T = [—13 -33 -31 —IO]T for the observer
vector gain. With 0=50, 0, =1,

observer gains can be obtained,
identity (23): 0, =150,
The observer is as follows:

the other sliding

from the polynomial
03 =7500and 64 =125000 .

21 = 22 _YIEI +91 (t)tanh(kofl )+u+y

A

Zy u+3(u+y)

|

D u+u+y

223 _'YZEI +92( )tanh(k Z1)+ !

m

%4)

—> W>
E

23 24 —'Y:z,%l +93(t)tanh(k021) +3(u+y)

.- Ry *)

+B,
-M, K, sin[ 3%

24

—v47 +04(t)tanh(k 7 )- B, K, 2

Zy
K.,
BnK,2,
Y
m

Ry + Ry By +

m
Note that, if the adaptive gain with A -modification is used
in the sliding observer term, the above values of 6;

become negative initial values of the adaptation law (32).
Accordingly with (33), the controller sliding surface is

defined as S, =2, -y, +&(z; —y,) with £=10. The

corresponding sliding control input can be expressed as
w=dl 2549, - - 90)- 05 + (D) anhlk S| (44)

where 1(0)=-50 in the updated law (37). With this

value, the attractiveness condition is satisfied. In order to
increase the sliding observer convergence and to force the
sliding controller state estimates closer to the true ones, the



parameter k, has to be chosen greater than k. in the

corresponding switching function. Therefore, the gain of
the tangent hyperbolic switching function is greater around
the origin.

The trajectory to be tracked is

v, (t)=1+cos(2t) (45)

In the figure 1 the response without chattering can be
observed. This is due to the appropriate values of the
parameters in the switching functions (the convergence
speed of the observer is greater than that of the controller).
Small parameter uncertainties (5%) have been considered
and random measurement noise. The curves, shown in the
figure 2, exhibit a chattering during the observer transient.
In this case, the observer convergence rate is comparable
with the controller one.

Limitation of the controller amplitude has been
introduced. The above values of 0,, obtained from the

polynomial identity (23) have been used as negative initial
values in the update law (32).

VI. CONCLUSIONS

A smooth sliding observer-controller with adaptively
updated gains for the switching functions is proposed in
order to control nonlinear systems. A parameterised
tangent hyperbolic function is used as a switching
function. The state dynamics of the controlled system
include an extra parameter term, further adaptively
updated, in order to obtain useful information despite fault
detection. The parameterised tangent hyperbolic function
assures the alleviation or complete elimination of
chattering. An appropriate choice of parameters in the
observer and controller switching functions allows the
observer convergence before that of the controller.
Adaptive gains, with appropriate initial values, lead to
small estimation and output tracking error and improve
robustness. Convergence rates, both for the observer and
the controller have been established. An application to a
flexible joint with one rigid link robot control is presented.
Closed loop response, obtained by simulation, confirms
the theoretical results.
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