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Abstract − An adaptive gain smooth sliding controller, based 
on a smooth sliding observer, is developed to control 
nonlinear SISO affine systems with uncertain parameters and 
state functions. Furthermore, an adaptively updated 
parameter term is introduced in the steady state space model 
of the controlled system in order to obtain useful information 
despite fault detection. Using a sliding observer with smooth 
switching function and adaptive gain increases the robustness 
w.r.t. uncertainties. The adaptive gains smooth sliding 
observer and controller are designed to fulfill the 
attractiveness condition on the corresponding switching 
surfaces. An application to a single arm, flexible joint robot is 
presented. In order to alleviate chattering in the observer and 
the controller, a parameterized tangent hyperbolic is used as 
a switching function, instead of a pure relay one. The gain of 
the switching function is adaptively updated, depending on 
the estimation error or on tracking error. 
 

I. INTRODUCTION 
The state and parameter uncertainties in the model of 

SISO non-linear systems and the deviations of the 
parameters from their nominal values lead to difficulties in 
the parameter identification and the state estimation. All of 
these make absolutely necessary the design of the 
controller and/or the observer such as the closed loop 
robustness (stability with small tracking and estimation 
errors) is achieved. It is well known that the robustness to 
model parameter uncertainties and external disturbances of 
the closed loop can be achieved with variable structure 
controller. Maintaining the system on a sliding surface 
weakens the influence of the uncertainties in the closed 
loop performances and quickly leads to an equilibrium 
point. In [2] an adaptive variable structure controller with 
parameterized sigmoid as a switching function and 
adaptive modifications of its amplitude (denoted λ -
modification) is used, instead of a pure relay one with 
constant gain. In this paper, a parameterized tangent 
hyperbolic function (denoted k-tanh) is used as a switching 
function to alleviate, or/and eliminate chattering. 
Decreasing the parameter k  in the switching function 
makes the gain around zero smaller and the unmodelled 
dynamics are less excited at high frequency. Also, the 
delay due to the control input calculus and the finite rate of 
switching can lead to chattering. Using the λ -modification 
into the gain of the k -tanh switching function, smoothes 
the response and increases the robustness to structural 
uncertainties. The adaptive gain is time depending, with 

the norm of the corresponding sliding surface, as an input. 
The combinations of variable structure observer-controller 
for several particular nonlinear systems with application to 
robot manipulators are presented in [1] and [8]. Results 
concerning the exponential convergence of adaptive 
observer under persistent excitation conditions applied to a 
class of non-linear systems are shown in [5] and [6]. In 
[7], the persistent excitation condition to the adaptive 
observer design is relaxed and an extension to non-linear 
external perturbed systems is presented. A further 
parameter term, which may be adaptively updated, is 
considered in order to obtain information about parameter 
deviations from their nominal values. 

The main contributions of this paper concern the 
smooth sliding observer-controller, the choice of the gains 
(the gains of linear part and of the variable structure part, 
respectively), the updating law of variable structure gains, 
and, finally, the state and tracking error bounds. The main 
advantage over other existing technique in the flexible 
joint robot control is that by using adaptive gain, small 
estimation and tracking errors can be obtained, with an 
appropriate choice of the initial condition in the updating 
law. In addition, parameterized smooth switching function 
keeps the performances in the presence of uncertainties 
and measurements noise, without infinite rate of switching. 
 

II. SYSTEMS IN ADAPTIVE OBSERVER FORM 
Consider the SISO nonlinear system 
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where hLi
f  is the ith-order Lie derivative of the smooth 

function h along the vector field f; 
A.2.2. Let r be the vector field, which satisfies 
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f 10r,hLddh LL =−              (2) 
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f
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where radi
f  represents the ith-order Lie bracket [ ]r,f  of 

the two vector fields f and r; 
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Accordingly with Lemma II.1 from [6], there exists a 
global space diffeomorphism 
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which transforms the system (1) into 
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where p,,1i,:,: n
i

n
o K=ℜ→ℜ×ℜΨℜ→ℜψ  are 

smooth functions. Moreover, based on [4] and [6], by 
using a filtered transformation 

( )π−ζ= tMz ,                                (6) 
the system (5) can be transformed in an adaptive observer 
form 

( ) ( ) zcy,tbuyzAz T
c

T
oc =πβ+ψ+=&              (7) 

where ,b,M  and β  are expressed hereafter. The matrix 

nxpM ℜ∈  can be expressed as [ ]TTN0M = , with 
( )xp1nN −ℜ∈   unique solution of the differential equation 

( ) ( ) N0N,u,yBNAN NN =Ψ+=&               (8) 

where ( ) ( ) ( )xn1n
N

1nx1n
N B,A −−− ℜ∈ℜ∈ are chosen as in 

[6]. The vector [ ]Tn1
n b,,b1b,b L=ℜ∈  has 

constant elements which are the coefficients of Hurwitz 
polynomial: n

2n
2

1n bsbs +++ −− L . Replacing (6) in (8) 
and using the above notations, the matrix M can be written 
as the unique solution of the differential equation 
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The matrix NA  being a Hurwitz matrix, then the matrices 
( )tN  and ( )tM  are bounded if the control input u and the 

function ( )yΨ are bounded. The vector Pℜ∈β  is a 
continuous bounded function and can be expressed as: 

( ) ( ) ( )[ ] ( )u,ycMAct,,tt T
cc

T
c

T
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Remark 2.1. If the assumptions A.2.2 and A.2.3 hold, 
then each element ( ) n,,1i,uyoi K=ψ  is independent of 
x. If not, some or all ( )yoiψ  may depend of z ( ( )y,zoiψ ). 
In this case the system (7) can be written as 

( ) ( ) zcy,t,u,ybuy,zzAz T
c

T
oc =πβ+ψ+=&          (11) 

which, obviously, it is not in adaptive observer form. 
Remark 2.2. If assumption A.2.6 holds, the system (1) 

can be transformed directly in the adaptive observer form 
(7) by using the global diffeomorphism (4), without 
passing trough the intermediary transformed form (5). 

Let ρ  be the integer defined as the global relative 
degree of the system (1). From the definition 4.1.2 of [5], 
the global relative degree is the integer such that: 
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Obviously, the transformed systems (4) and (7) have the 
same relative degree as the original system (1). Taking 
into account the relative degree, the elements of the vector 
term ( )uyoψ , from (7) or (11), can be written as: 

( )
( ) ( )uxhLLxhLu,1n,,j

,uxhLLu,1,,1i,0u
1n

fg
n
fon

1j
fgojoi
−

−

+=ψ−ρ=

=ψ−ρ==ψ

K

K
      (13) 

 
III. ADAPTIVE GAIN SMOOTH SLIDING OBSERVER 

The attention is focused on the system (1) and on its 
transformed form (11). A smooth sliding observer, with 
constant or adaptive gain is proposed in this section. All 
the uncertainties are considered on the function f and g. 
Define the estimates of f and g as gf ˆˆ . 

Remark 3.1. The transformed system (11) is more 
general than the system (7), although the last one is in 
adaptive observer form. 

If 11o ẑzS −= is chosen as the sliding surface, then we   
will proof that the first ρ  state estimate errors are 
ultimately bounded, while the others ρ−n  errors are 
bounded in the presence of the model uncertainties into the 
functions ( )xf  and ( )xg . Consider the following 
assumptions: 

A.3.1. The functions h,g,f  are all of nC -class; 
A.3.2. The transformation, introduced by (4), is a global 

diffeomorphism; 
A. 3.3. The relative degree of the system, introduced by 

(12), fulfils the inequality n<ρ ; 
A.3.4. The uncertainties in the functions ( )xf  and 
( )xg , defined as 
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fulfill the following conditions: 
[ ] 0t,000 T

1n ≥∀α<∆∆ −ρ LL    (15) 

( ) ( ) ( ) 0t,xTx̂T̂t,x̂,xn ≥∀ϕ+−ε<∆           (16) 

where ( )xT̂  is a known diffeomorphism which allows the 
inverse and ϕεα ,,  are positive constants. 

A.3.5. The vector function, ( ) ( )t,u,yt β=β  is uniformly 
bounded for every bounded pair ( )u,y . 

Theorem 3.1. (Sliding observer convergence). 
Consider the systems (1), (11) or (7), the last one in the 
adaptive observer form, ĝ,f̂  the available estimates of the 
functions g,f  and the uncertainties fulfilling (15), (16), 
then, one can design the adaptive sliding observer 
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zẑktanhzẑẑ
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having the evolution on a neighborhood of the sliding 
surface, i.e. ( ) ( ) 0ẑzx̂T̂xTS 1111o ≈−=−= , where ok  is 

a positive constant. The vector gain [ ]Tn1 ,, γγ=Γ L  
with the expression 

+ℜ∈σσ−−=Γ ,bbAc ,               (18) 

can be computed such that T
cc cA Γ+  is a stable matrix. 

The vector gain [ ]Tn1 ,, θθ=Θ L  can be chosen such 
that the error in the first ρ  transformed state estimates is 
ultimately bounded by an arbitrarily small constant and the 
error of the other ρ−n  states is bounded. 

Proof: The dynamics of the state estimation error is 
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n
f̂

1n
fg

n
f1on1nn

1j
f̂ĝ
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With the gain Γ  computed as in (18), the polynomial 
identity holds 
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1
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n
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(20) 
which, due to the n-1 zero-pole cancellations, leads to the 
first order strictly real positive transfer function 

( )[ ] ( ) 11T
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T
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σ+=γ+− . Because T
cc cA Γ+  is a 

stable matrix which fulfils the strictly positive real 

condition (condition B.1.2 from [5]), the Meyer-Kalman-
Yacubovich Lemma B.2.2 and the Theorem B.2.2, [5], 
may be applied. Consequently, the linear part of the state 
estimation dynamics, from (18), is globally asymptotically 
stable, i.e. 
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The gain 1θ  has to be chosen such that the sliding 
condition is fulfilled (the attractiveness condition) 

0SS oo <& . This condition leads to 
0t,ẑzẑz 221111 ≥∀−>−γ+θ             (21) 

Choosing the gain 1θ  such as 0tzẑ 221 ≥∀−>θ , the 
inequality (21) is satisfied with the equivalent state error 
dynamics 
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The gains iθ  can be chosen such that the following 
polynomial identity holds 
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where θ  is a positive constant. Changing the variables 
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equations from (17)  
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Define the Lyapunov function νν= PV T  with the 
positive definite matrix ( ) ( )1nx1nP −−ℜ∈  as the solution of 
the equation IPDPD T −=+ . Expressing its derivative 
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using (15), (16), the definition of ν  and the inequality 
νλ≤νν Pmax

T P , the following inequality holds 
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where nP  is the last column of matrix P. By adding 

0,2 >µνµ  to both sides of (28), one obtains the second 
order inequality 
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Due to the Corollary 5.3 of Theorem 5.1 from [3], there 
exists a finite time 1t  such that 
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The definition of the vector ν , from (24), and the above 
inequality lead to the conclusion that 
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Therefore, all the state observation errors in the 
transformed space converge to a bounded region, and the 
first ρ  errors could be arbitrarily small for sufficiently 
large θ . 

Remark 3.2. The upper bounds of the state estimation 
errors, given by (31), allow adaptive gains in sliding 
observer (17). As in [2], the gains n,,1i,i L=θ  become 
time depending, including λ -modification 

( ) ( ) ( )tz~tt 1oiiioi ϑ−θλ−=θ& ,                 (32) 
where oioi ,ϑλ  are positive constants and ( )oi tθ  fulfils 
the polynomial identity (23). The dynamics (32) force 

( )tiθ  to negative values. They are almost zero when the 
observer is in the neighbourhood of the sliding surface. 
 

IV. ADAPTIVE GAIN SLIDING CONTROLLER 
The sliding controller, presented hereafter, is an 

extension of the one from [8] to nonlinear affine systems 
with the relative degree strictly less than the state 
dimension. Let choose the controller sliding surface as: 
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with 1=ξρ  and 1,,1i,i −ρ=ξ L  Hurwitz coefficients. 

The reference to be tracked ry  is assumed to be a 
nC function. The expression of the sliding controller  
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is derived from the expression of feedback linearization 
controller. The gain η  has to be computed in order to 
fulfill the attractiveness of the sliding surface. ck is a 
positive constant. The derivative of the controller sliding 
surface (33) is 
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where the gain φ  is chosen to maintain cŜ  bounded 
during the observer transient. Applying (31) and assuming 
that the gains iθ  are chosen as (23), the controller 

attractiveness condition 0ŜŜ cc <
&  is satisfied if 
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gains iξ  are the coefficients of a polynomial with all 
stable and real roots, and using the bounds of the state 
errors (31), the tracking error fulfils the inequality 
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for t sufficiently large  

Remark 4.1. If the variable structure term in (33) has 
the gain adaptively updated by λ -modification 

( ) ( ) ccc Stt ϑ−ηλ−=η& ,                   (37) 
with cc ,ϑλ  positive constants, then the tracking error will 
reduce asymptotically, By choosing the value of the 
constant ok  greater than ck , the smooth switching 
function of the observer is closer to a pure relay than the 
smooth switching function of the controller. Therefore, the 
observer converges faster than the controller with small 
estimate error. 
 

V. APPLICATION TO A FLEXIBLE JOINT ROBOT 
MANIPULATOR 

The dynamic equations of a single link robot arm with a 
revolute elastic joint (robot with flexible joints) rotating in 
a vertical plane are  
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where 1q  and 2q  are the link displacement angle and the 
rotor (motor shaft) displacement angle, respectively. The 
link inertia aJ , the motor rotor inertia mJ , the elastic 



constant k, the mass link M, the gravity constant g, the 
centre of mass l and the viscous friction coefficients aF , 

mF  are positive constant parameters. The control u is the 
torque delivered by the motor. Choosing as state variables 

11 qx = , 12 qx &= , 23 qx = , neglecting the viscous 
friction of the arm, considering the position of the motor 
shaft as the measured output and introducing the vector 
term ( ) [ ][ ]TT 11uybt,u,yb =πβ , then the system state 
equations can be expressed as: 
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(39) 
The following parameters and uncertainties are 

considered (note that the matching conditions are not 
fulfilled): 5M = , 10g = , 5.0l = , 200k = , 1Ja = , 

05.0J m = , 1.0Fm = , 200K a = , 4500K m = , 2Bm = , 

06.0Ĵ m = , 30M̂ a = , 300K̂ a = , 4500K̂ m = , 

5.1B̂m = , where: 
a

a J
MglM = , 

a
a J

kK = , 
m

m J
kK = , 

m

m
m J

F
B = .  

The Lie derivatives, ( ) n,,0i,xhLi
f L= , are: ( ) 3xxh = , 

( ) 4f xxhL = , ( ) ( )31m4m
2
f xxKxBxhL −+−= ,  

( ) ( ) ( ) 2m31mm4m
2
m

3
f xKxxKBxKBxhL +−−−=  

( ) ( ) ( )
( )( ) 2mm31am

2
mm

1ma4
3
mmm

4
f

xKBxxKKBK

xsinKMxBKB2xhL

−−−−+

−−=
 

The Lie derivatives, ( ) 1n,,0i,xhLL i
fg −= L , are: 

( ) 0xhLg = , ( )
m

fg J
1xhLL = , ( )

m

m2
fg J

B
xhLL −= ,  

( )
m

m
2
m3

fg J
KB

xhLL
−

= . 

One remarks that the system is of order 4 (n=4) and of 
relative degree two ( 2=ρ ). 

The state transformation, defined in (4), is 

( )
( ) ( ) 










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


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−+−
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2
m
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4

3
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xxKxB

x
x

z   (40) 

which has the following inverse transform 
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1
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The transformed state equations are 

( )

( )

( ) ( )yuu
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zKzBz
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413ma
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
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  (42) 

In order to alleviate the chattering in the state estimates 
and control input, a parameterized tangent hyperbolic will 
be used as switching function and gain adaptively updated 
in the observer, as in (32), and in the controller as in (37). 
Choosing [ ]T1331b =  and 10=σ , the expression 

(18) yields [ ]T10313313 −−−−=Γ for the observer 
vector gain. With 50=θ , 11 =θ , the other sliding 
observer gains can be obtained,  from the polynomial 
identity (23): 1502 =θ , 75003 =θ and 1250004 =θ . 
The observer is as follows: 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) yuu
Ĵ
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ẑK̂ẑB̂ẑ
sinK̂M̂ẑ
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
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


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−=
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+++θ+γ−=

++θ+γ−=

&

&
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  (43) 

Note that, if the adaptive gain with λ -modification is used 
in the sliding observer term, the above values of iθ  
become negative initial values of the adaptation law (32). 

Accordingly with (33), the controller sliding surface is 
defined as ( )r1r2c yẑyẑŜ −ξ+−= &  with 10=ξ . The 
corresponding sliding control input can be expressed as 

( ) ( ) ( )[ ]ccr2r3 ŜktanhtŜyẑyẑĴu η+φ−−ξ−+−= &&&     (44) 
where ( ) 500 −=η  in the updated law (37). With this 
value,  the attractiveness condition is satisfied. In order to 
increase the sliding observer convergence and to force the 
sliding controller state estimates closer to the true ones, the 



parameter ok  has to be chosen greater than ck  in the 
corresponding switching function. Therefore, the gain of 
the tangent hyperbolic switching function is greater around 
the origin. 

The trajectory to be tracked is 
 ( ) ( )t2cos1ty r +=                             (45) 

In the figure 1 the response without chattering can be 
observed. This is due to the appropriate values of the 
parameters in the switching functions (the convergence 
speed of the observer is greater than that of the controller). 
Small parameter uncertainties (5%) have been considered 
and random measurement noise. The curves, shown in the 
figure 2, exhibit a chattering during the observer transient. 
In this case, the observer convergence rate is comparable 
with the controller one.  

Limitation of the controller amplitude has been 
introduced. The above values of iθ , obtained from the 
polynomial identity (23) have been used as negative initial 
values in the update law (32). 
 

VI. CONCLUSIONS 
A smooth sliding observer-controller with adaptively 

updated gains for the switching functions is proposed in 
order to control nonlinear systems. A parameterised 
tangent hyperbolic function is used as a switching 
function. The state dynamics of the controlled system 
include an extra parameter term, further adaptively 
updated, in order to obtain useful information despite fault 
detection. The parameterised tangent hyperbolic function 
assures the alleviation or complete elimination of 
chattering. An appropriate choice of parameters in the 
observer and controller switching functions allows the 
observer convergence before that of the controller. 
Adaptive gains, with appropriate initial values, lead to 
small estimation and output tracking error and improve 
robustness. Convergence rates, both for the observer and 
the controller have been established. An application to a 
flexible joint with one rigid link robot control is presented. 
Closed loop response, obtained by simulation, confirms 
the theoretical results. 
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